Effective Use of Explanations in Few-Shot Prompting for Textual Reasoning

Xi Ye
The University of Texas at Austin 2023/03

Prompting with Explanations

Q: Alice has 5 apples. Bob has 2 apples. How
many apples do they have together?
A: The answer is 7 .

Q: Charlie has 4 toys. Dianna has twice as much as Charlie. How many toys do they have together?

A: The answer is 12.

Performance on GSM
19\%

Q: Alice has 5 apples. Bob has 2 apples. How many apples do they have together?
A: They have $5+2=7$ apples together. The answer is 7 .

Q: Charlie has 4 toys. Dianna has twice as much as Charlie. How many toys do they have together.

A: Dianna has 2 * $4=8$ toys. They have $4+8=12$ toys in total. The answer is 12

Performance on GSM
65\%

- Including explanations (ScratchPad; Chain-of-Thought) in prompts

Prompting with Explanations

Chain-of-Thought Prompting Elicits Reasoning in Large Language Models

Jason Wci Brian Ichter	Xuezhi Wang Dale Schurrmans Fei Xia Ed H. Chi Quoc V.Le		
	Google Research, Brain Team \{jasonwei, dennyzhou\}-8goagle.con		
	- - Chain-of-thought prompting -- - Prior supervised best		
LaMDA GFT PaL			
	0^{∞}		
Model scale (\# parameters in billions)			

Challenging BIG-Bench tasks and whether chain-of-thought can solve them

$$
\begin{array}{ccccc}
\text { Mirac Suzgun }^{\pi} & \text { Nathan Scales } & \text { Nathanael Scharrli } & \text { Sebastian Gehrmanr } \\
\text { Yi Tay } & \text { Hyung Won Chung } & \text { Aakanksha Chowdhery } & \text { Quoc V. Le } \\
\text { Ed H. Chi } & \text { Denny Zhou } & \text { Jason Wei }
\end{array}
$$

challenging tasks in BTG-Bench Hard, for standard "answer-only" (left) and chain-of-thought (right) prompting.
Table 1. Accuracy comparison of Zero-shol-CoT wilh Zetu-shot on each tasks. The values on the let side of each task are the results of using answer extraction prompts depending on answer format as
dcscribed at \& 3. The values on the right side are the result of additional experiment where standard answer prompt "The answer is" is used fior answer extraction. See Appendix A.5 for detail setups.
and

	SingleEq	AddSub	Multiarith	GSM8K	AQUA	SVAMP
zero shot	74.678.7	72.2/77.0	17.7/22.7	10.4/12.5	22.4/22.4	58.8158.7
zero shot cot	78.078.7	69.674.7	78.7179.3	40.7/40.5	33.5/1.9	62.1/63.7
	as		Other Reasoning Tash		Symbolic Reasouing	
	Common	Strategy 0.4	Date Understand	Shuffled Objects	Last Letter (4 words)	Coin Flip (4 times)
zeto-shot	68.8/77.6	12.7/54.3	49.3/33.6	31.3/29.7	0.24-	12.853
zero-shot-cre	64.6/64.0	54.8/523	67.5/1.18	52.452.9	57.6/-	91.4/87.8

Andrew K. Lampinen, Ishita Dasgupta, Stephanie C. Y. Cha Kory Mathewson, Michael Henry Tessler, Antonia Creswell James L. McClelland, Jane X. Wang, Felix Hil

DeepMind
London, UK

Using Explanations for Textual Reasoning

- We study prompting LLMs with explanations for textual reasoning tasks such as QA and NLI
- Explanations may not always improve prompting performance on textual reasoning tasks
- Performance is sensitive to different explanations

An E-SNLI Example

Premise: A female is looking through a microscope. Hypothesis: A lady is observing something.
Explanation: You're looking through a microscope you are observing something.
Label: Entailment

Alternative Explanation: Looking through microscope implies observing

Prompting Performance

Without
Explanations

Crowdsourced
Explanations

Alternative Expl
(Same Few Shots)

Outline

How well can LLMs learn from explanations in-context?
How to make explanations work better?
The Unreliability of Explanations in Few-Shot Prompting for Textual Reasoning

X Ye and G Durrett, NeurIPS 22

- Benchmark the effective of explanations in-context

Explanation Selection using Unlabeled Data for In-Context Learning

X Ye and G Durrett, ArXiv 23

- Optimize explanations to improve downstream performance

Complementary Explanations for Effective In-Context Learning

X Ye, S Iyer, A Celikyilmaz, V Stoyanov, G Durrett, and R Pasunuru, ACL Findings 23

- Empirical analysis on how explanations work in in-context learning

Outline

How well can LLMs learn from explanations in-context?
How to make explanations work better?
The Unreliability of Explanations in Few-Shot Prompting for Textual Reasoning

- Benchmark the effective of explanations in-context

Explanation Selection using Unlabeled Data for In-Context Learning
X Ye and G Durrett, ArXiv 23

- Optimize explanations to improve downstream performance

Complementary Explanations for Effective In-Context Learning
X Ye, S Iyer, A Celikyilmaz, V Stoyanov, G Durrett, and R Pasunuru, ACL Findings 23

- Empirical analysis on how explanations work in in-context learning

Using Explanations for Textual Reasoning

Crestfallen is a track on The Smashing Pumpkins' album, Adore. The single's artwork is by Yelena Yemchuk.
Johnny McDaid is a Croatian professional photographer.
Yelena Yemchuk is a Ukrainian professional photographer.
Q: Crestfallen's artwork is done by a photographer of which nationality?

GPT-3

A: First, Crestfallen's artwork is done by Yelena Yemchuk. Second, Yelena Yemchuk is a Croatian photographer. The answer is Croatian.

- Prompting LLMs with explanations for QA

Using Explanations for Textual Reasoning

```
Crestfallen is a track on The Smashing Pumpkins' album, Adore. The single's artwork is by Yelena Yemchuk.
Johnny McDaid is a Croatian professional photographer.
Yelena Yemchuk is a Ukrainian professional photographer.
Q: Crestfallen's artwork is done by a photographer of which nationality?
```


GPT-3

A: First, Crestfallen's artwork is done by Yelena Yemchuk. Second, Yelena Yemchuk is a Croatian photographer. The answer is Croatian.

- Prompting LLMs with explanations for QA
- How well can LLMs learn from explanations in-context?
- Q1: Does adding explanations to few-shot prompts improve performance?
- Q2: Can LLMs generate reliable explanations?

Tasks

- Synthetic: a controlled synthetic QA dataset which allows full understanding of correct reasoning process

Context: Christopher agrees with Kevin. Tiffany agrees with Matthew. Mary hangs out with Daniel. James hangs out with Thomas. Kevin is a student. Matthew is a plumber. Daniel is a student. Thomas is a plumber. Q: Who hangs out with a student?
A: Mary.
Explanation: Mary hangs out with Daniel and Daniel is a student.

- AdvHotpot: a difficult version of adversarial Hotpot QA datasets
- E-SNLI: NLI with free-text explanations

Prompting Methods

- Standard: directly answer

- Explain-predict: Scratchpad (Nye et al., 2021); Chain-of-thought (Wei et al., 2022);

- Predict-explain: first makes a prediction and then generates an explanation

$$
\text { Question } \frac{R}{\frac{R}{2}} \rightarrow \text { Answer Explanation }
$$

Results: Performance

- LLMs: OPT-175B, GPT-3 (davinci), InstructGPT(text-daivinci-001), and text-davinci-002
(?) Do explanations help?

Results: Performance

- LLMs: OPT-175B, GPT-3 (davinci), InstructGPT (text-daivinci-001), and text-davinci-002
(?) Do explanations help?
- For the Synth dataset: minor gains on OPT, GPT-3, InstructGPT. More substantial improvements on text-davinci-002.

Results: Performance (Cont’d)

- LLMs: OPT-175B, GPT-3 (davinci), InstructGPT (text-daivinci-001), and text-davinci-002

Do explanations help?

- For the Synth dataset: minor gains on OPT, GPT-3, InstructGPT. More substantial improvements on text-davinci-002
- Consistent trends on HotpotAdv and E-SNLI

Unreliability of Explanations

? Can language models generate reliable explanations?

- Factuality: whether an explanation is factually grounded in the input context

nonfactual explanation on SYNTH (E-P)

Stephanie is an engineer. John is a nurse. Jonathan hangs out with Stephanie. Tiffany is a nurse. Emily agrees with John. David agrees with Jason. Angela hangs out with Tiffany.
Q: Who hangs out with a nurse?

Unreliability of Explanations (Cont’d)

? Can language models generate reliable explanations?

- Factuality: whether an explanation is factually grounded in the input context

nonfactual explanation on AdvHотРот (E-P)

Crestfallen is a track on The Smashing Pumpkins' album, Adore. The single's artwork is by Yelena Yemchuk.
Johnny McDaid is a Croatian professional photographer.
Yelena Yemchuk is a Ukrainian professional photographer.
Q: Crestfallen's artwork is done by a photographer of which nationality?

GPT-3

A: First, Crestfallen's artwork is done by Yelena Yemchuk. Second, Yelena Yemchuk is a Croatian photographer. The answer is Croatian.

$\rightarrow 180$
 Unreliability of Explanations (Cont’d)

?. Can language models generate reliable explanations?

- Factuality: whether an explanation is factually grounded in the input context
- Consistency: whether an explanation entails the answer

Inconsistent explanation on SYNTH (E-P)

Matthew blames Tiffany. Lisa is a chef.
Christopher helps Kelly. Angela helps Jessica. Rachel blames Lisa. Jessica is a farmer. Kelly is a chef. Tiffany is a farmer
Q: Who helps a farmer?

A: Jessica is a farmer and Christopher helps Kelly. The answer is Christopher.

Results: Reliability
?. Can language models generate reliable explanations?

- Factuality: whether an explanation is factually grounded in the input context
- Consistency: whether an explanation entails the answer
- Model-generated explanations can be unreliable

Results: Reliability (Cont’d)

Can language models generate reliable explanations?

- Factuality: whether an explanation is factually grounded in the input context
- Consistency: whether an explanation entails the answer
- Model-generated explanations can be unreliable (I)

Connecting Factuality and Accuracy

Stephanie is an engineer. John is a nurse. Jonathan hangs out with Stephanie. Tiffany is a nurse. Emily agrees with John. David agrees with Jason. Angela hangs out with Tiffany.
Q: Who hangs out with a nurse?

A: Jonathan hangs out with Stephanie and Stephanie is a nurse. The answer is a Jonathan.p(incorrect/nonfactual) p(incorrect/factual)

- Incorrect predictions are more likely to co-occur with nonfactual explanations

Connecting Factuality and Accuracy

Stephanie is an engineer. John is a nurse. Jonathan hangs out with Stephanie. Tiffany is a nurse. Emily agrees with John. David agrees with Jason. Angela hangs out with Tiffany.
Q: Who hangs out with a nurse?

- Incorrect predictions are more likely to co-occur with nonfactual explanations
- Nonfactual explanations can be useful as a way to verify LLMs' predictions
- On Synth, we sample multiple explanation-answer pairs, and reject nonfactual ones
- Successfully improves the accuracy from 54% to 74% (P-E)

Wrap-up

- LLMs are not good enough at using explanations for textual reasoning
- Simply including explanations in prompt may not always lead to substantial benefits
- Model-generated explanations can be unreliable
- But flawed explanations can be useful for verifying LLMs' predictions

The Unreliability of Explanations in Few-Shot Prompting for Textual Reasoning
Xi Ye and Greg Durrett, NeurIPS 2022

```
Missing You is a Souti Korean televisicn series starring Park Yoo-chun and Yoo Seung-ho. Yoo Seung-ho (bom 17
    Augist 1993) is a South Korean azor. Park Yoo-chun (borm 23 July 1990) is a Scuth Korean acto:
    Q: Which Missing You actor was jorn August 17 1993?
Explanation A: First, Missing You stars Yoo Seugg-ho. Second, Yoo Seung-ho is born 17 August 1993. The answer is Yoo
Seung-ho
Cresfallen is a track cn The Smashing Pumpkins' album,Adore. The single's artwork is by Yelena Yemchuk. Johnny
    McDaid is a Cmation crofesinal photographer Yelen V vemctuk is a Ulkrimian professional photmgrapher
    Q: Crestallen's artwork is done by a photographer of wh.ch national:ty?
                GPT-3
    Output A: First, Crestallen's artwork is done by Yelena Yemchuk. Second, Yelena Yemchuk is a Croatian professional
    photographer. The noswer is Cratis
        Calibrator
                                $T The prodiotion is inoorreot. The explanation is not faotual with rospoot to the contoxt.

\section*{Outline}

©
How well can LLMs learn from explanations in-context?
How to make explanations work better?
The Unreliability of Explanations in Few-Shot Prompting for Textual Reasoning

X Ye and G Durrett, NeurIPS 22
- Benchmark the effective of explanations in-context

Explanation Selection using Unlabeled Data for In-Context Learning
X Ye and G Durrett, ArXiv 23
- Optimize explanations to improve downstream performance

\section*{Complementary Explanations for Effective In-Context Learning}

X Ye, S Iyer, A Celikyilmaz, V Stoyanov, G Durrett, and R Pasunuru, ACL Findings 23
- Empirical analysis on how explanations work in in-context learning


\section*{Performance Varying Across Explanations}

Q: Alice has 5 apples. Bob has 2 apples. How many apples do they have together?

A: They have \(5+2=7\) apples together. The answer is 7 .

Q: ...


Q: Alice has 5 apples. Bob has 2 apples. How many apples do they have together?

A: Because Alice has 5 apples and Bob has 2 apples. We know \(5+2=7\). The answer is 7 .

Q: ...

- Performance varies across explanations
- How to find the explanations that yields better downstream performance?

\section*{Optimizing Explanations}
\begin{tabular}{l} 
Few-Shot \\
Exemplars
\end{tabular}\(\quad Q_{1} A_{1} ; Q_{2} A_{2} ; \ldots ; Q_{K} A_{K}\)
- Search for \(E_{1} \quad E_{2} \quad \ldots E_{K}\) that yields better end task performance (on unseen test set)
\[
\left(Q_{1} E_{1} A_{1} ; Q_{2} E_{2} A_{2} ; \ldots ; Q_{K} E_{K} A_{K}\right) ; Q-\frac{\mathbb{Q}}{\mathbb{Q}} \text { Performance } \begin{gathered}
\text { Best }
\end{gathered}
\]

\section*{Data Condition}

Few-Shot
Exemplars
Seed
Explanations

Unlabeled
Dev set
\[
Q_{1} \quad A_{1} ; Q_{2} A_{2} ; \ldots ; Q_{K} A_{K}
\]
\[
\begin{array}{llll}
\tilde{E}_{1} & \tilde{E}_{2} & \cdots & \tilde{E}_{K}
\end{array}
\]
\[
V=\begin{array}{llll}
Q_{1} & Q_{2} & \ldots & Q_{M}
\end{array}
\]

Optimized
Explanations
\(E_{1} \quad E_{2} \ldots E_{K}\) that yields better end task performance

\section*{Approach Overview}
- Generate candidate explanations: use seed explanations to perform leave-one-out prompt
\[
\begin{aligned}
& \left(Q_{2} \tilde{E}_{2} A_{2} ; \ldots ; Q_{K} \tilde{E}_{K} A_{K}\right) ; Q_{1}-\begin{array}{lll}
\hat{E}_{1}^{(1)} & \hat{A}_{1}^{(1)} & \hat{A}_{1}^{(1)}=A_{1} \\
\hat{E}_{1}^{(2)} & \hat{A}_{1}^{(2)} & \hat{A}_{1}^{(2)} \neq A_{1}
\end{array} \\
& \text { View } Q_{1} \text { as test query } \\
& \text { Only keep explanations } \\
& \text { paired correct answers }
\end{aligned}
\]

Q: Alice has 5 apples....How many apples do they have?
A: They have .... The answer is 7 .
...
Q: ..
A: ...
Q: Charlie has 4 toys. Dianna has twice as much as Charlie. How many toys do they have together.

A: Dianna has 2 * \(4=8\) toys. They have \(4+8=12\) toys in total. The answer is 12 .

A: Diana has twice toys. So they have \(4^{*} 2=8\) toys. The answer is 8.

\section*{Approach Overview}
- Generate candidate explanations: use seed explanations to perform leave-one-out prompt - This yields combinations of explanations
\[
\left(Q_{2} \tilde{E}_{2} A_{2} ; \ldots ; Q_{K} \tilde{E}_{K} A_{K}\right) ; Q_{1}-\frac{\mathbb{R}}{\mathbb{E}} \rightarrow \begin{array}{lll}
\hat{E}_{1}^{(1)} & \hat{A}_{1}^{(1)} & \hat{A}_{1}^{(1)}=A_{1} \\
\hat{E}_{1}^{(2)} & \hat{A}_{1}^{(2)} & \hat{A}_{1}^{(2)} \neq A_{1}
\end{array}
\]


\section*{Approach Overview (Cont’d)}
- Generate candidate explanations: use seed explanations to perform leave-one-out prompt - This yields combinations of explanations
- Silver-label development set: sample combinations and silver-label V by prompting and voting


\section*{Approach Overview (Cont'd)}
- Generate candidate explanations: use seed explanations to perform leave-one-out prompt - This yields combinations of explanations
- Silver-label development set: sample combinations and silver-label V by prompting and voting
- Select combination based on silver-accuracy: score combinations using silver-accuracy
- Essentially, we search for combinations that gives best silver accuracy


\section*{Performance Varying across Explanations}
- We investigate the variance of performance obtained with different combinations
- Performance varies widely across explanations on four tasks
- Seed explanations (annotated by crowdworkers) yields suboptimal performance

Stats of performance across sampled combinations
\begin{tabular}{lcccc}
\hline & Min & AVG & MAX & SEED \\
\hline GSM & 57.7 & 61.8 & 66.0 & 61.9 \\
ECQA & 72.7 & 76.1 & 78.6 & 74.9 \\
E-SNLI & 60.3 & 72.3 & 80.1 & 71.8 \\
STRATEGYQA & 69.8 & 73.8 & 76.5 & 74.0 \\
\hline
\end{tabular}

\section*{Prioritizing Search}
- We can only evaluate the silver-accuracy of a few combinations owning to the high cost of running LLMs


Prioritizing Search
- We can only evaluate the silver-accuracy of a few combinations owning to the high cost of running LLMs
- We use proxy metrics that are cost-efficient to compute to first find more promising combinations to search over


\section*{Approach Overview}
- Generate candidate explanations
- This yields combinations of explanations
- Silver-label development set: sample combinations and vote to silver-label V
- Use proxy metrics to pre-filter promising combinations
- Select combination based on silver-accuracy: score combinations using silver-accuracy


\section*{Proxy Metrics}
- One-shot Silver Accuracy: we approximate the accuracy of a combination by the aggregated one-shot accuracy
- We can score any combinations with this proxy metric once we score all \(\mathrm{Q}, \mathrm{E}, \mathrm{A}\) individually (feasible computation)
\[
\left(\begin{array}{lllllllllll}
Q_{1} & E_{1} & A_{1}
\end{array} ; Q_{2} E_{2} A_{2} ; \ldots ; Q_{K} E_{K} A_{K}\right) ; Q \underset{\frac{Q}{0}}{\substack{\text { Full Prompt } \\
\text { Performance }}}
\]
\(\downarrow\) Approximated with


\section*{Proxy Metrics}
- One-shot Silver Accuracy: we approximate the accuracy of a combination by the aggregated one-shot accuracy
- We can score any combinations with this proxy metric once we score all \(\mathrm{Q}, \mathrm{E}, \mathrm{A}\) individually (feasible computation)
\[
\left(Q_{1} E_{1} A_{1} ; Q_{2} E_{2} A_{2} ; \ldots ; Q_{K} E_{K} A_{K}\right) ; Q-\frac{\mathbb{P}}{\mathbf{O}} \rightarrow
\]

\section*{\(\downarrow\) Approximated with}
\(Q_{1} E_{1} A_{1} ; Q-\frac{\mathbb{P}}{\frac{P}{O}} \underset{\text { Performance }}{\text { One-Shot }}+Q_{2} E_{2} A_{2} ; Q-\frac{\mathbb{Q}}{\frac{P}{2}} \underset{\text { Performance }}{\text { One-Shot }}+\)
- One-shot Log-likelihood (skipped): maximizing the one-shot likelihood on the few-shot exemplar sets
- This allows using a few gold labels
\[
\sum_{j=1: K} \sum_{i=1: K \wedge i \neq j} \log p\left(e_{j}, a_{j} \mid\left(q_{i}, e_{i}, a_{i}\right), q_{j} ; \theta\right)
\]

\section*{Experiment Setup}
- Datasets: GSM (arithmetical reasoning), ECQA (commensenQA), ESNLI (natural language inference), StrategyQA (multi-hop open QA)
- LLM: Code-davinci-002
- Data Condition:


\section*{Effectiveness of Proxy Metrics}
- One-shot Silver Accuracy: aggregated one-shot silver accuracy on the development set

X-Axis: proxy metrics
Y-Axis: downstream acc
Colors: combinations preferred by different proxy metrics

- The proxy metrics correlates well with downstream accuracy in most cases

Effectiveness of Proxy Metrics
- One-shot Silver Accuracy: aggregated one-shot silver accuracy on the development set
- One-shot Log-Likelihood: aggregated one-shot likelihood on few-shot exemplars


GSM


ECQA


ESNLI


StrategyQA
- Similar trends: the proxy metrics correlates well with downstream accuracy in most cases

\section*{Effectiveness of Proxy Metrics}
- One-shot Silver Accuracy: aggregated one-shot silver accuracy on the development set
- One-shot Log-Likelihood: aggregated one-shot likelihood on few-shot exemplars
- Using approximate metrics allows prioritize search over betters combinations than naive (randomly sampled combinations)
- No one-size-fit-all solution


GSM: OSAcc


GSM: OSLL X


StrategyQA: OSAcc X


\section*{Approach Overview}
- Generate candidate explanations
- This yields combinations of explanations
- Silver-label development set: sample combinations and vote to silver-label V
- Use proxy metrics to pre-filter promising combinations
- Select combination based on silver-accuracy: score combinations using silver-accuracy


\section*{Main Experiments}
- Seed: initial explanations
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multirow[t]{2}{*}{GSM} & & \multirow[t]{2}{*}{ECQA} & & \multirow[t]{2}{*}{ESNLI} & Stra \\
\hline 62.8 & & 77 & & 75.2 & & -71.3. \\
\hline \[
s^{e^{d}}
\] & & \[
s^{e^{d}}
\] & & \[
S^{e^{d}}
\] & & \[
5^{e^{d}}
\] \\
\hline
\end{tabular}
- Results are averaged from four trials with four randomly selected \(K\) exemplars

Main Experiments
- Seed: initial explanations
- Naive: using our framework to search over random combinations


ESNLI
StrategyQA

- Results are averaged from four trials with four randomly selected \(K\) exemplars
- Applying our optimization framework and search over random combinations can already yield better performing explanations

\section*{Main Experiments}
- Seed: initial explanations
- Naive: using our framework to search over random combinations
- OSAcc: search over combinations found by OSAcc
GSM
\(-62.8 \underbrace{64.7} 64.7\)
\(S^{e^{d}} \mathrm{PO}^{0^{d}} S^{S^{d^{C}}}\)

ECQA


ESNLI


StrategyQA

- Using the proxy metric allows us prioritize search on better performing combinations, which yields better results in general

\section*{Main Experiments}
- Seed: initial explanations
- Naive: using our framework to search over random combinations
- OSAcc: search over combinations found by OSAcc


ECQA


ESNLI


StrategyQA

- Ensemble: search over combinations found by OSAcc + OSLL
- Achieves the best performance overall

\section*{Wrap-up}
- We can optimize for better explanations regarding downstream performance, using only unlabeled data
- We propose two proxy metrics to prioritize exploring better combinations given a limited computation

Explanation Selection using Unlabeled Data for InContext Learning

Xi Ye and Greg Durrett, ArXiv 2023


\section*{Outline}

©
How well can LLMs learn from explanations in-context?
How to make explanations work better?
The Unreliability of Explanations in Few-Shot Prompting for Textual Reasoning

X Ye and G Durrett, NeurIPS 22
- Benchmark the effective of explanations in-context

\section*{Explanation Selection using Unlabeled Data for In-Context Learning}

X Ye and G Durrett, ArXiv 23

- Optimize explanations to improve downstream performance

\section*{Complementary Explanations for Effective In-Context Learning}

X Ye, S Iyer, A Celikyilmaz, V Stoyanov, G Durrett, and R Pasunuru, ACL Findings 23
- Empirical analysis on how explanations work in in-context learning


\section*{How Explanations Work?}
- LMs don't "follow" prompts in some ways


Do LMs "follow" explanations? How do explanations work for in-context-learning?

\section*{What Makes Explanations Effective?}
- Probe LLMs with perturbed explanations
- Perturbing Computation Trace
- Perturbing Natural Language

Question Take the last letters of the words in "Bill Gates" and concatenate them.

Gold Explanation
Trace NL
The last letter of "Bill" is letter"I". The last of "Gates" is "s". Concatenating "I" and "s" is "Is". So the answer is Is.

Perturbing Trace

> The last letter of "Bill" is letter " ". The last of "Gates" is " ". Concatenating "l" and "s" is "ls". So the answer is Is.

Perturbing NL "Bill", "I", "Gates","s","I","s","Is". So the answer is Is.

\section*{What Makes Explanations Effective?}
- Probe LLMs with perturbed explanations
- Perturbing Computation Trace
- Perturbing Natural Language

Question: Take the last letters of the words in "Bill Gates" and concatenate them

Concatenating 1 and \(s\) is 1 s . So the answer is ls.
Mask1: The last letter of Bill is _. The last letter of Gates is Concatenating 1 and \(s\) is \(1 s\). So the answer is ls.
Mask2: The last letter of Bill is 1. The last letter of Gates is \(n\). Concatenating _ and _ is _. So the answer is \(\ln\).
Incorrect: The last letter of "Bill" is " y ". The last letter of "Gates" is "e". Concatenating " \(y\) " and "e" is "ye". So the answer is ye.
No NL: "Bill", "1". "Gates", "s". "1", "s", "1s". So the answer is 1s.

Question: Leah had 32 chocolates and her sister had 42. If they ate 35 , how many pieces do they have left in total?

Gold: Leah had 32 chocolates and Leah's sister had 42. That means there were originally \(32+42=74\) chocolates. 35 have been eaten. So in total they still have 74-35=39 chocolates. The answer is 39.

Mask1: Leah had 32 chocolates and Leah's sister had 42. That means there were originally \(32+42=\) _ chocolates. 35 have been eaten. So in total they still have _-35=39 chocolates. The answer is 39 .
Mask2: Leah had 32 chocolates and Leah's sister had 42. That means there were originally _ chocolates. 35 have been eaten. So in total they still have _ chocolates. The answer is 39 .
Incorrect: Leah had 32 chocolates and Leah's sister had 42. That means there were originally \(32+42=62\) chocolates. 35 have been eaten. So in total they still have \(62-35=27\) chocolates. The answer is 27 .
No NL: \(32+42=74,74-35=39\). The answer is 39 .

Question: A coin is heads up. Shaunda does not flip the coin. Shalonda flips the coin. Is the coin still heads up?

Gold: The coin started heads up. Shaunda does not flip the coin, so it becomes heads up. Shalonda flips the coin, so it becomes
tails up. So the answer is no.
Mask1: The coin started heads up. Shaunda does not flip the coin, so it becomes _ up. Shalonda flips the coin, so it becomes tails up. So the answer is no.
Mask2: The coin started heads up. Shaunda does not flip the coin, so it becomes heads up. Shalonda flips the coin, so it becomes _ up. So the answer is no.
Incorrect: The coin started heads up. Shaunda does not flip the coin, so it becomes tales up. Shalonda flips the coin, so it becomes heads up. So the answer is yes.
No NL: heads, heads, tails. So the answer is no.

\section*{How Explanations Work?}
? Do LMs "follow" explanations?
- YES. Perturbing either trace or NL leads to performance degradation.
- Both trace and NL contribute to making effective explanations
- But perturbed explanations are still beneficial compared to not using explanations at all


\section*{\(\rightarrow 0\) \\ What Makes A Good Set of Explanations?}
- Given a test query, we study how to form a maximally effective set of exemplars
- Interplay between query and exemplar: relevance (using more relevant examples)
- Interplay between exemplars in the set: complementarity

\section*{Test Query:}

Q: Peter bought 20 popsicles at \(\$ 0.25\) each.
He bought 4 ice cream bars at \(\$ 0.50\) each.
How much did he pay in total?
A: 0.25 * \(20=5.0 .5\) * \(4=2.5+2=7\). The answer is 7 .

\section*{Addition Exemplars:}

Q: Marion received 20 more turtles than Martha. If Martha received 40 turtles, how many turtles did they receive together?
A: \(20+40=60.60+40=100\). The answer is 100 .

\section*{Complementary}

\section*{Multiplication Exemplars:}

Q: Car Wash Company cleans 80 cars per day. They make \(\$ 5\) per car washed. How much money will they make in 5 days?
A: 8 * \(5=40.40\) * \(5=2000\). The answer is 2000

\section*{Probing with Complementary Exemplars}
- We test whether LLMs can benefit from complementarity of exemplars

\section*{Addition Exemplars:}

Q: Marion received 20 more turtles than Martha. If Martha received 40 turtles, how many turtles did they receive together? A: \(20+40=60.60+40=100\). The answer is 100.

\section*{Multiplication Exemplars:}

Q: Car Wash Company cleans 80 cars per day. They make \(\$ 5\) per car washed. How much money will they make in 5 days?
A: 8 * \(5=40.40\) * \(5=2000\). The answer is 2000

\section*{Experiments Setup}


Q: Peter bought 20 popsicles at \(\$ 0.25\) each. He bought 4 ice cream bars at \(\$ 0.50\) each. How much did he pay in total?
A: 0.25 * \(20=5.0 .5\) * \(4=2.5+2=7\). The answer is 7 .

\section*{Probing with Complementary Exemplars}
- Complementary exemplar sets lead to better performance


\section*{MMR for Exemplar Selection}
- Prominent nearest neighbor-based exemplar selection method only considers relevance
- We propose a maximal-marginal-relevance (MMR) -based exemplar selection method, which selects diverse exemplars that are relevant to the test query

\author{
Test Query
}
\(Q\)

Currently Selected Exemplars
\[
T=Q_{1}, Q_{2}, \ldots, Q_{k-1}
\]

Distance Metric
\(S\left(Q_{i}, Q_{j}\right)\)

Next Exemplar to Select
\[
Q_{k}=\arg \max _{Q_{j}} \lambda S\left(Q, Q_{j}\right)-(1-\lambda) \max _{Q_{i} \in T} S\left(Q_{j}, Q_{i}\right)
\]

Relevant to test query
Diverse w.r.t. already
selected exemplars

\section*{Experiments}
- Datasets: GSM, ECQA, E-SNLI LLM: code-davinci-002
- Baselines: random exemplar selection; nearest neighbor-based exemplar selection
- Distance Metrics:
- BERTScore: \(S\left(Q_{i}, Q_{j}\right)=\operatorname{BERTScore}\left(Q_{i}, Q_{j}\right) \quad\) LLMScore: \(S\left(Q_{i}, Q_{j}\right)=P_{L L M}\left(Q_{i} \mid Q_{j}\right)\)


\section*{Experiments}
- Datasets: GSM, ECQA, E-SNLI LLM: code-davinci-002
- Baselines: random exemplar selection; nearest neighbor-based exemplar selection
- Distance Metrics:
- BERTScore: \(S\left(Q_{i}, Q_{j}\right)=B E R T S c o r e\left(Q_{i}, Q_{j}\right) \quad\) LLMScore: \(S\left(Q_{i}, Q_{j}\right)=P_{L L M}\left(Q_{i} \mid Q_{j}\right)\)

- MMR is more effective than NN in general across different datasets and different metrics

\section*{Wrap-up}
- Both computation trace and NL contributes to effective explanations
- LLMs can benefit from complementary explanations

\section*{Complementary Explanations for Effective In-Context Learning}

\author{
X Ye, S Iyer, A Celikyilmaz, V Stoyanov, G Durrett, and R Pasunuru, ACL Findings 23
}


\section*{Takeaways!}
- How well can LLMs learn from explanations in prompts?
- Only more advanced LLMs (like text-davinci-002) can benefit substantially
- The generated explanations might be unreliable
- How to make explanations work better?
- We can optimize explanations using unlabeled data
- We can construct explanations that are relevant and diverse
- What about now?
- More recent LLMs have incredibly strong reasoning abilities; but they can still generate unreliable explanations

\section*{What about Now?}

Each of five experts-a lawyer, a naturalist, an oceanographer, a physicist, and a statistician-individually gives exactly one presentation at a conference. The five presentations are given consecutively. Each presentation is in exactly one of the four following languages: French, Hindi, Japanese, or Mandarin. Each expert speaks exactly one of the languages. The following conditions must hold: Exactly two of the
one of the languages. The following conditions must hold: Exactis two of the
presentations are in the same language as each other. The statistician gives the second presentation in Hindi. The lawyer gives the fourth presentation in either Mandarin or French. The oceanographer presents in either French or Japanese; the same is true of the physicist. The first presentation and the last presentation are in Japanese. Question: Which one of the following could be the order in which the experts give their presentations, from first to last?
Choices:
(A) the physicist, the statistician, the lawyer, the naturalist, the oceanographer
(B) the physicist, the naturalist, the oceanographer, the lawyer, the statistician
(B) the physicist, the naturalist, the oceanographer, the lawyer, the statistician
(C) the oceanographer, the statistician, the naturalist, the lawyer, the physicist
(D) the oceanographer, the statistician, the lawyer, the naturalist, the physicist

Now let's go through each of the answer choices and see if they satisfy all the conditions:

Please answer this question. Please think carefully and explain the thought process before answering.
(5) To solve this problem, we need to use the given concitions to determine the possible orders in which the experts could give their presentations.
(A) the physicist, the statistician, the lawyer, the naturalist, the oceanographer
- The first and fifth positions are Japanese, and the second position is Hindi, which satisfies conditions 1 and 2.
The fourth position can be either Mandarin or French, which satisfies condition 3. The third position can be either French or Japanese, which satisfies condition 4. - However, this order does not satisfy condition 5, because the third and fourth positions are occupied by the lawyer and the naturalist, who speak different languages.
(B) the physicist, the naturalist, the oceanographer, the lawyer, the statistician

The first and fifth positions are Japanese, and the second position is Hindi, which satisfies conditions 1 and 2.

The fourth position can be either Mandarin or French, which satisfies condition 3. The third position can be either French or Japanese, which satisfies condition 4. This order satisfies condition 5 , because the third and fourth positions are occupied by the oceanographer and the lawyer, who speak French.
Therefore, this order could be possible
. The first presentation and the last presentation are in Japanese, so the first and fifth positions must be Japanese.
2. The statistician gives the second presentation in Hindi, so the second position must be Hindi.
3. The lawyer gives the fourth presentation in either Mandarin or French, so the fourth position must be either Manderin or French.
4. The oceanographer presents in either French or Japanese; the same is true of the physicist, so the third position can be either French or Japanese.
5. Exactly two of the presentations are in the same language as each other, which means that the third and fourth positions must be in the same language.

taur.cs.utexas.edu


Greg Durrett


Ram Pasunuru


Srini Iyer


Asli Celikyilmaz


Ves Stoyanov```

